Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 124: 155292, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38190784

RESUMEN

BACKGROUND: (-)-Syringaresinol (SYR), a natural lignan with significant antioxidant and anti-inflammatory activities, possesses various pharmacological benefits including cardio-protective, antibacterial, anticancer, and anti-aging effects. It was shown that the effectiveness of (+)-syringaresinol diglucoside on the ulcerative colitis (UC) was attributed to the active metabolite (+)-syringaresinol (the enantiomor of SYR). However, the efficacy of SYR against UC remains unclear, and the associated molecular mechanism has not been revealed yet PURPOSE: This study aimed to assess the protective effect of SYR in UC and its underlying mechanism STUDY DESIGN AND METHODS: We examined SYR's protective impact on the intestinal epithelial barrier and its ability to inhibit inflammatory responses in both a lipopolysaccharide (LPS)-induced Caco-2 cell model and a dextran sodium sulfate (DSS)-induced UC mouse model. We also explored the potential signaling pathways regulated by SYR using transcriptome analysis and western blot assay RESULTS: In Caco-2 cells, SYR significantly increased trans-epithelial electrical resistance, reduced tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interferon-γ (IFN-γ), and cyclooxygenase-2 (COX-2) levels, and enhanced cellular tight junction protein expression and distribution. In mice with UC, oral treatment with SYR (10, 20, 40 mg·kg-1) dose-dependently increased body weight, colon length, and expression of tight junction proteins, decreased disease activity index score, spleen coefficient, cytokine serum levels, bacterial translocation, and intestinal damage, and also preserved the ultrastructure of colonic mucosal cells. Transcriptomics indicated that the anti-UC effect of SYR is mediated via the PI3K-Akt/MAPK/Wnt signaling pathway. CONCLUSION: In summary, SYR effectively mitigated the development of UC by enhancing the intestinal epithelial barrier function and attenuating the inflammatory response. The plant-derived product SYR might be a potentially effective therapeutical agent against UC.


Asunto(s)
Colitis Ulcerosa , Colitis , Furanos , Lignanos , Humanos , Animales , Ratones , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Células CACO-2 , Fosfatidilinositol 3-Quinasas/metabolismo , Colon/patología , Lignanos/farmacología , Lignanos/uso terapéutico , Mucosa Intestinal/metabolismo , Modelos Animales de Enfermedad , Sulfato de Dextran/efectos adversos , Ratones Endogámicos C57BL , Colitis/inducido químicamente
2.
Molecules ; 28(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36838515

RESUMEN

BACKGROUND: Saussurea pulchella (SP) is a traditional medicinal plant that is widely used in folk medicine because of its diverse biological activities, particularly its anti-inflammatory effects. However, the alleviation effect of SP on ulcerative colitis (UC) has not yet been realized. PURPOSE: To investigate the chemical composition and therapeutic effect of SP extract against UC. METHODS: First, qualitative and quantitative analysis of SP 75% ethanol extract was performed by UPLC-Q/TOF-MS. Second, a dextran sodium sulfate (DSS) model of UC mice was developed to study the effects of SP on the symptoms, inflammatory factors, oxidative stress indexes and colon histopathology. Third, an integration of network pharmacology with metabolomics was performed to investigate the key metabolites, biological targets and metabolisms closely related to the effect of SP. RESULTS: From the SP ethanol extract, 149 compounds were identified qualitatively and 20 were determined quantitatively. The SP could dose-dependently decrease the DAI score, spleen coefficient and the levels of TNF-α, IL-6, iNOS, MPO and MDA; increase the colon length, GSH level and SOD activity; and protect the intestinal barrier in the UC mice. Moreover, 10 metabolite biomarkers,18 targets and 5 metabolisms were found to play crucial roles in the treatment of UC with SP. CONCLUSIONS: SP 75% ethanol extract could effectively alleviate the progression of UC and, therefore, could be classified as a novel natural treatment for UC.


Asunto(s)
Colitis Ulcerosa , Saussurea , Factor de Necrosis Tumoral alfa , Animales , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Colon/metabolismo , Sulfato de Dextran , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Estrés Oxidativo , Saussurea/química , Factor de Necrosis Tumoral alfa/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Fitoquímicos/química
3.
Biomed Pharmacother ; 149: 112823, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35334426

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a prevalent respiratory disease. Aiming at assessing the effect of total saponins from American ginseng on COPD, both the chemical composition and anti-COPD activity of total saponins from wild-simulated American ginseng (TSW) and field-grown American ginseng (TSF) were investigated in this study. Firstly, a HPLC-ELSD chromatographic method was established to simultaneously determine the contents of 22 saponins in TSW and TSF. Secondly, CS-induced COPD mouse model was established to evaluate the activity of TSW and TSF. The results indicated that both TSW and TSF had the protective effect against COPD by alleviating oxidative stress and inflammatory response. TSW showed a stronger effect than TSF. Thirdly, an integrated approach involving metabolomics and network pharmacology was used to construct the "biomarker-reaction-enzyme-target" correlation network aiming at further exploring the observed effects. As the results, 15 biomarkers, 9 targets and 5 pathways were identified to play vital roles in the treatment of TSW and TSF on COPD. Fourthly, based on network pharmacology and the CS-stimulated A549 cell model, ginsenoside Rgl, Rc, oleanolic acid, notoginsenoside R1, Fe, silphioside B were certified to be the material basis for the stronger effect of TSW than TSF. Finally, the molecular docking were performed to visualize the binding modes. Our findings suggested that both TSW and TSF could effectively ameliorate the progression of COPD and might be used for the treatment of COPD.


Asunto(s)
Fumar Cigarrillos , Panax , Enfermedad Pulmonar Obstructiva Crónica , Saponinas , Animales , Biomarcadores/metabolismo , Metabolómica/métodos , Ratones , Simulación del Acoplamiento Molecular , Farmacología en Red , Panax/química , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/prevención & control , Saponinas/metabolismo , Saponinas/farmacología , Saponinas/uso terapéutico
4.
J Food Biochem ; 46(2): e14042, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34981530

RESUMEN

American ginseng berry (AGB) is a new medicinal source. Total saponins of American ginseng berry (TSAGB) are the main active ingredients. The effects and active saponins of TSAGB on myocardial ischemia (MI) rats were evaluated for the first time. First, there were 69 saponins identified or tentatively characterized by Ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS/MS) combined with UNIFI platform, among which, about 28 saponins were first identified in AGB. Second, MI model was established by ligating left coronary artery. It has been demonstrated that TSAGB could prevent the ST-segment elevation, reduce myocardial infarct size and levels of aspartate aminotransferase (AST), creatine kinase (CK), lactate dehydrogenase (LDH), malondialdehyde (MDA), and elevate the superoxide dismutase (SOD) level. Finally, network pharmacology combined with molecular docking to screen out four active saponins (ginsenoside Re, Rb3 , Rg3 , and PF11 ) and five key targets (SOD1, LDHA, CKB, GOT2, and ROS1) closely related to MI. PRACTICAL APPLICATIONS: This study enriches the chemical composition of TSAGB, and provides a basis for clarifying the pharmacological substances for anti-myocardial ischemia. TSAGB might be a potential anti-myocardial ischemia agent. The effect might be related to alleviating oxidative stress.


Asunto(s)
Isquemia Miocárdica , Panax , Saponinas , Animales , Frutas , Simulación del Acoplamiento Molecular , Isquemia Miocárdica/tratamiento farmacológico , Panax/química , Fitoquímicos/farmacología , Proteínas Tirosina Quinasas , Proteínas Proto-Oncogénicas , Ratas , Saponinas/farmacología , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA